Power System Dynamics as Primal-Dual Algorithm for Optimal Load Control

نویسندگان

  • Changhong Zhao
  • Ufuk Topcu
  • Na Li
  • Steven H. Low
چکیده

We formulate an optimal load control (OLC) problem in power networks where the objective is to minimize the aggregate cost of tracking an operating point subject to power balance over the network. We prove that the swing dynamics and the branch power flows, coupled with frequency-based load control, serve as a distributed primal-dual algorithm to solve OLC. Even though the system has multiple equilibrium points, we prove that it nonetheless converges to an optimal point. This result implies that the local frequency deviations at each bus convey exactly the right information about the global power imbalance for the loads to make individual decisions that turn out to be globally optimal. It allows a completely decentralized solution without explicit communication among the buses. Simulations show that the proposed OLC mechanism can resynchronize bus frequencies with significantly improved transient performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer

This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...

متن کامل

UPFC Siting and Sizing in Power Network Using Two Different Evolutionary Algorithm

In emerging electric power systems, increased transactions often lead to the situations where the system no longer remains in secure operating region. The flexible Ac transmission system (FACTS) controllers can play an important role in the power system security enhancement. However, due to high capital investment, it is necessary to locate these controllers optimally in the power system. FACTS...

متن کامل

Application Flatness Technique for Intelligent Control of a New Electric Energy Source

In this paper, an intelligent control strategy based on combination of the “flatness based control technique” and the “perturbation and observation (P&O) MPPT algorithm” is developed and investigated to control a hybrid electric energy source (HEPS). This EHPS is composed of a fuel cell system (FC) and a solar panel (SP), as the main source and a supercapacitor bank (SC), as the auxiliary sourc...

متن کامل

FACTS Devices Allocation Using a Novel Dedicated Improved PSO for Optimal Operation of Power System

Flexible AC Transmission Systems (FACTS) controllers with its ability to directly control the power flow can offer great opportunities in modern power system, allowing better and safer operation of transmission network. In this paper, in order to find type, size and location of FACTS devices in a power system a Dedicated Improved Particle Swarm Optimization (DIPSO) algorithm is developed for de...

متن کامل

Economic Evaluation of Optimal Capacitor Placement in Reconfiguration Distribution System Using Genetic Algorithm

Optimal capacitor placement, considering power system loss reduction, voltage profile improvement, line reactive power decrease and power factor correction, is of particular importance in power system planning and control. The distribution system operator calculates the optimal place, number and capacity of capacitors based on two major purposes: active power loss reduction and return on invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1305.0585  شماره 

صفحات  -

تاریخ انتشار 2013